Tarif

Sıcak Çikolata

Kış gecelerinin vazgeçilmez içeceği Sıcak Çikolata tarifi :)
5 Dakika
1 Kişilik
İçecekler
Pişirilmez
Paylaş
  • 713
  • 5
  • Kaydet

Sıcak Çikolata Malzeme Listesi

Ölçü Birimleri Dönüştürme Tablosu için tıklayın
5 g Çikolata Tozu
180 ml Pınar Latte Art Barista Süt
Pınar

Sıcak Çikolata Nasıl Yapılır?

  • Süt ve çikolata tozu ısıtma kabına koyularak karıştırılır ve kaynayana kadar beklenilir.
  • Hazırlanan sıcak çikolata servis fincanına koyulur ve servis edilir.

Hemen Tıkla, Alışverişe Başla!

PınarOnline’da birbirinden avantajlı kampanyaları kaçırma!

Kısık Ateş
Kısık Ateş
Moderator
4.0
2 Değerlendirme

Tarifi değerlendirmek ister misiniz?

Benzer İçecekler

Kısık Ateş
Kısık Ateş
Moderator
Affogato
5 Dakika
2-4 Kişilik
419 Görüntüleme
Kısık Ateş
Kısık Ateş
Moderator
Vişneli ve Kremalı Parfe
20 Dakika
2-4 Kişilik
267 Görüntüleme
Kısık Ateş
Kısık Ateş
Moderator
Protein Macchiato
5 Dakika
1 Kişilik
294 Görüntüleme

Yorumlar (29)

John Doe
· 19.12.2018

Test comment

John Doe
· 19.12.2018

Test reply

Erinç Fırtına
· 19.12.2018

Test another reply

Erinç Fırtına
· 20.12.2018

Test another comment

Erinç Fırtına
· 20.12.2018

Just as algebra is fundamental to the whole of mathematics, algebraic data types (ADTs) are fundamental to many common functional programming languages. They’re the primitives upon which all of our richer data structures are built, including everything from sets, maps, and queues, to bloom filters and neural networks.

Erinç Fırtına
· 20.12.2018

There’s something magical about Recurrent Neural Networks (RNNs). I still remember when I trained my first recurrent network for Image Captioning. Within a few dozen minutes of training my first baby model (with rather arbitrarily-chosen hyperparameters) started to generate very nice looking descriptions of images that were on the edge of making sense. Sometimes the ratio of how simple your model is to the quality of the results you get out of it blows past your expectations, and this was one of those times. What made this result so shocking at the time was that the common wisdom was that RNNs were supposed to be difficult to train (with more experience I’ve in fact reached the opposite conclusion). Fast forward about a year: I’m training RNNs all the time and I’ve witnessed their power and robustness many times, and yet their magical outputs still find ways of amusing me. This post is about sharing some of that magic with you.

Erinç Fırtına
· 20.12.2018

Sequential processing in absence of sequences. You might be thinking that having sequences as inputs or outputs could be relatively rare, but an important point to realize is that even if your inputs/outputs are fixed vectors, it is still possible to use this powerful formalism to process them in a sequential manner

Alpcan Aydin
· 20.12.2018

Recurrent neural networks are one of the staples of deep learning, allowing neural networks to work with sequences of data like text, audio and video. They can be used to boil a sequence down into a high-level understanding, to annotate sequences, and even to generate new sequences from scratch!